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Preface

We want to briefly justify why there should be another probability book, when
so many others are available.

Motivation: Students from majors in the mathematical sciences and in other
areas will be more engaged with the material if they are studying problems
that are relevant to them. While testing drafts of the book in the classroom,
the students who used this book were asked to contribute questions. As a
result, many of the exercises in this text began with questions motivated by the
students’ own interests.

Example- and exercise-oriented approach: Our book serves as a student’s
first introduction to probability theory, so we devote significant attention to a
wealth of exercises and examples. We encourage students to practice their skills
by solving lots of questions. Our exercises are split into practice, extensions,
and advanced types of questions. We recommend assigning a small number of
questions to students on a daily basis. This promotes more interactive discus-
sion in class between the students and the instructor. It consistently empowers
the students to try their hand at some problems of their own. It reduces stress
and “cramming” at exam time, as the students consistently develop their under-
standing during the course. It also provides a firm foundation for the students’
long term understanding of probability. The exercises, theorems, definitions,
and remarks are all numbered in one list (instead of numbered separately) be-
cause we believe that they all should be used in tandem to understand the
chapter material.

Relationship between events and random variables: The jump from events
to random variables is often a “leap” in other texts. In the present book, we
devote significant attention to outcomes, events, sample spaces, and probabili-
ties, before moving on to random variables. Random variables are introduced
explicitly as real-valued functions on the sample space, i.e., as functions that
depend on the outcome. The notation X(ω) is used to introduce a random
variable at first (where ω is an outcome), so that students can more easily make
a transition from studying outcomes to studying random variables that depend
on such outcomes.

Jointly distributed random variables: Many probability texts first emphasize
properties of one discrete random variable, followed by properties of one contin-

xiii
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uous random variable, and finally return to jointly distributed random variables.
We believe, in contrast, that a firm understanding of jointly distributed random
variables, from the very beginning, is most helpful for the students’ comprehen-
sive understanding of the material. Using jointly distributed random variables
at an early stage of the book also allows for more intuitive definitions of some of
the concepts. For instance, many probability texts introduce Binomial random
variables by explaining the mass, which requires a good grasp of Binomial co-
efficients, i.e., of

(
n
k

)
. We believe, however, that Binomial random variables are

introduced more intuitively by X = X1 + · · ·+Xn, where the Xj ’s are indicator
random variables. This requires the students to have familiarity with more than
one random variable at a time (i.e., to understand joint distributions), but it
allows the students to be more versatile in their thinking. It promotes the un-
derstanding of “big picture” kinds of insights. Students begin to think, from the
very start, about the ways in which random variables are related, and the ways
in which collections of random variables can give rise to new random variables.

Counting: Many probability books start with counting, which means this
material is taught during the first two or three weeks of a course. Unfortu-
nately, this means that a student who is weighing her/his interest in a course
will not even begin to grasp the concepts of randomness until the registration
period is over. This leads to attrition. Moreover, some questions in counting
are best understood from a probabilistic point of view, using (for instance) the
linearity of expectation, which is not available to the students at the start of the
course. As an example, consider how many couples are expected to sit together,
when people sit uniformly at random in a circle. This question can be answered
very succinctly, using indicator functions and the linearity of expectation. (The
probability mass function, in contrast, is cumbersome to compute.) In general,
we believe that our approach to counting is significantly enhanced by the use
of sums of indicator random variables. Therefore, we focus on counting after
we finish a thorough treatment of discrete random variables, but before moving
onwards to continuous random variables. This allows the students to feel con-
fident in their understanding of the discrete world before they tackle difficult
counting questions. We emphasize to students that combinatorics is a deep and
beautiful subject (much of the Ward’s research is motivated by problems in ap-
plied discrete mathematics). We also try to emphasize the connections between
discrete random variables and counting. We firmly believe that this is best
accomplished when the students already understand discrete random variables.

Comparison/summary chapters: A first course in probability theory can feel
like a whirlwind tour. Thus, we have checkpoints throughout the book, where
material is summarized and reviewed. This helps to ground the reader and
build confidence. It also helps the students discriminate between the commonly
confused distributions and counting techniques, mass functions vs. CDFs, etc.
These summaries are useful while reviewing for examinations, e.g., the Actuarial
P/1 exam given by the Society of Actuaries and the Casualty Actuarial Society.
Passing the P/1 exam requires knowledge of all the material in this text. We
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also guide the students through ways to tell which kind of distribution they are
working with. We give suggestions about how to grasp nuances in a problem that
make it a Binomial or Geometric or Negative Binomial situation. These guides
help students home in on what separates these distributions. We summarize
each distribution for quick reference, but we also go into details to explain each
discrete distribution’s mass, expected value, variance, etc.

Our students have had an excellent experience using this probability book.
Several of our own students have already passed the SOA/CAS P/1 exam after
having learned probability using only the early drafts of this book. Our students
seem to enjoy the many examples and friendly tone. We hope that you and your
students also find our book approachable and thorough. We are delighted by the
kind reception that our students and colleagues have given to the book during
its pilot tests.

We have divided our book into seven main parts:

Part I: Randomness. We introduce outcomes, events, sample spaces, basic
probability rules, independence, conditional probabilities, and Bayes’ Theorem.

Part II: Discrete Random Variables. We discuss the difference between dis-
crete and continuous random variables and introduce probability mass function,
cumulative distribution function, expected value, variance, and joint distribu-
tions for discrete random variables.

Part III: Named Discrete Random Variables. We consider ways to dis-
tinguish between—and perform calculations with—the most common discrete
random variables: Bernoulli, Binomial, Geometric, Negative Binomial, Poisson,
Hypergeometric, and Discrete Uniform. We include a review chapter to help
students see the similarities and differences between all of these distributions.

Part IV: Counting. We use indicator variables and the linearity of expecta-
tion as tools to help tackle several different types of counting problems: sam-
pling with and without replacement; when order matters and doesn’t matter;
and rearrangement problems. We have case studies on poker and Yahtzee, two
popular games many students will recognize.

Part V: Continuous Random Variables. We reinforce the difference between
discrete and continuous random variables. Then we introduce the probability
density function, cumulative distribution function, expected value, variance,
and joint and conditional distributions for continuous random variables.

Part VI: Named Continuous Random Variables. We show ways to utilize
(and quickly make distinctions between) the most common continuous random
variables: Continuous Uniform, Exponential, Gamma, Beta and Normal. We
show how the Central Limit Theorems and Laws of Large Numbers work. We
include a review chapter to help students see the similarities and differences
between all of these continuous distributions and between some of the continuous
and discrete distributions.
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Part VII: Additional Topics. Here we cover more advanced topics that could
be optional, depending on how much time an instructor has in a semester or
quarter. We treat the distribution of a function of one continuous random vari-
able, the variance of sums of random variables, correlation, conditional expecta-
tion, Markov and Chebyshev Inequalities, order statistics, moment generating
functions, and the joint density of two random variables that are functions of
another pair of random variables.
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Notation Review

Notation for Named Sets of Numbers:

Z≥0 the set of nonnegative integers Z≥0 = {0, 1, 2, . . .}
Z the set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}
N the natural (a.k.a. counting) numbers, N = {1, 2, . . .}

R>0 the set of positive real numbers
R≥0 the set of nonnegative real numbers

R the set of real numbers, including positive
and negative numbers, i.e., whole numbers, fractions,
decimals, roots (although not imaginary), and
transcendental numbers like π and e.

Notation for Events:

sets: {things in the set | conditions on those things};
e.g., S = {(x, y) | x+ y = 2}.

∅ the empty set, i.e., event with no outcomes
e.g., A ∩B = ∅ if A,B have no outcomes in common;
see the definition of ∩ below to clarify further

S the sample space, i.e., event with all outcomes
ω an outcome in the sample space
∈ inclusion in an event (i.e., x ∈ A if outcome x is in event A)
⊂ subset (i.e., A ⊂ B if every outcome of A is also in B)
|A| the number of outcomes (also called the size) of event A

B
A

xix
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Notation for Building New Events Using Known Ones:

c complement of an event, which corresponds with the word “not”
i.e., x is in Ac exactly when x is not in A

A Ac

S

\ setminus (i.e., B \A = B ∩Ac;
the event containing outcomes in B that are not in A)

∪ union of events, which corresponds with the word “or,”
i.e., A ∪B is the event containing outcomes in A or B or both.
The set A ∪B corresponds to the region containing
shading, lines, or both, in the figure below.

∩ intersection of events, which corresponds with the word “and,”
i.e., A ∩B is the event containing outcomes in A and B.
The set A ∩B is the region that contains lines
overlapping the shading in the figure below.

B

A

S

Notation for Random Variables:

X a random variable (always written in capital letters)
x a value that a random variable might take on

P (A) probability that event A occurs
P (X = x) is a shorthand notation for P ({ω | X(ω) = x})
E(X) = µ expected value of X

Var(X) = σ2 variance of X



Math Review

Geometric Sums

For −1 < a < 1, recall these two finite summations of geometric terms,

1 + a+ a2 + a3 + · · ·+ ar =
r∑
j=0

aj =
1− ar+1

1− a

and

a+ a2 + a3 + a4 + · · ·+ ar =

r∑
j=1

aj =
a− ar+1

1− a
.

For −1 < a < 1, these yield two infinite summations of geometric terms,

1 + a+ a2 + a3 + · · · =
∞∑
j=0

aj =
1

1− a

and

a+ a2 + a3 + a4 + · · · =
∞∑
j=1

aj =
a

1− a
.

Exponential Function

For any real-valued x, the power series definition of the exponential function
evaluated at x is

ex =
∞∑
n=0

xn

n!
,

where n! := (1)(2) · · · (n).

Sum of Integers, Sum of Squares

It is also helpful to know that, for positive integers n,

1 + 2 + · · ·+ n =
(n)(n+ 1)

2

and
12 + 22 + · · ·+ n2 =

(n)(n+ 1)(2n+ 1)

6

xxi
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Floor and Ceiling Functions

bxc round x down to the closest, lower integer, e.g., b14.37c = 14
dxe round x up to the closest, higher integer, e.g., b14.37c = 15

Binomial Coefficient(
n
k

)
= n!

k!(n−k)! number of ways to choose k out of n objects, when the
order of selection does not matter, e.g.,

(
5
3

)
= 10 since there are 10 ways to

choose 3 out of 5 objects:

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Gamma Function
Γ(n) = (n − 1)! The gamma function extends the notion of factorials

beyond the set of nonnegative integers. We will only use this one fact about the
gamma function in this text.

Double Integration∫ b
a

∫ d
c f(x, y) dy dx This denotes the double integral of f(x, y) over the

range where a ≤ x ≤ b and c ≤ y ≤ d. Under most conditions used in this book,
the order of integration can often be switched. (In more advanced courses, this
must be done with caution, and suitable convergence theorems must hold—
but we do not cover such topics in this text.) If the order of integration is
switched, we have instead

∫ d
c

∫ b
a f(x, y) dx dy. We urge students to make sure

that the outer integral corresponds to the outer variable, and the inner integral
corresponds to the inner variable.

Dice
We assume that all dice in this text are six-sided, numbered 1, . . . , 6, unless
stated otherwise.

Cards
We assume that all decks of playing cards have 52 cards, consisting of four suits
(spades ♠, hearts ♥, diamonds ♦, clubs ♣), 13 values each: A, 2, 3, . . . , 10, J ,
Q, K.



Part I

Randomness

At the beginning of this course in probability, we consider the basic aspects
of randomness. We first discuss the outcomes that are possible when some-
thing random occurs, with an emphasis on how these outcomes can be collected
into events. Then we give the basic, fundamental notions of probability theory.
These are very simple to state, but they constitute the groundwork on which
the rest of our study of probability theory is based. We also consider indepen-
dence of events, as well as the way that the occurrence of one event will affect
the probability of occurrence of another event. The first part of the book con-
cludes with the introduction of Bayes’ Theorem, which allows us to manipulate
probabilities and conditional probabilities.

Even small children learn basic probability ideas simply from observing the
world around them. We will formalize these probability ideas and introduce
mathematical calculations to go with them. Drawing pictures to help visualize
the information in the stories is strongly recommended.

By the end of this part of the book, you should be able to:

1. Define basic terms related to probability and events.

2. Use proper set notation for events.

3. Characterize the possible outcomes, when something random occurs.

4. Describe the events into which outcomes can be grouped.

5. Assign probabilities to events, and perform calculations using probability
rules.

6. Calculate whether two or more events are independent.

7. Calculate the probability of an event occurring, given that another event
occurred.

8. Calculate the conditional probability of an event using Bayes’ Theorem.

1



2 Part I. Randomness

Math skills you will need: basic understanding of set notation, unions, in-
tersections, and summation

∑
notation.

Additional resources: Calculators may be used to assist in the calculations.
Colored pencils may be helpful for drawing Venn diagrams clearly.



Chapter 1

Outcomes, Events, and Sample
Spaces

On Monday in math class, Mrs. Fibonacci says, “You know, you can think of
almost everything as a math problem.” On Tuesday I start having problems.

—Math Curse by Jon Scieszka and Lane Smith (Viking, 1995)

In a National Public Radio story from November 30, 2012, “That’s So Random:
The Evolution of an Odd Word,” Neda Ulaby writes about the many misuses of
the word “random” in our modern culture, including snippets from the comedian
Spencer Thompson’s routine, “I Hate When People Misuse the Word Random.”
For example, Thompson explains that if your friends talk about a “random
party” they went to, it probably wasn’t as random is they think since it was likely
to be held within a reasonably small community and planned with some people
that your friends already knew. What do mathematicians and statisticians
mean by the word “random”?

1.1 Introduction

Probability theory is the study of randomness and all things associated with
randomness. Examples abound everywhere. From the time that we are children,
we play guessing games, roll dice, and flip coins. We frequently encounter the
unknown and the uncertain. We turn on an mp3 player in a “shuffle” mode, or
listen to the radio, eagerly waiting to see what song will come on next. The
time until an something happens is often random, e.g., until a traffic light turns
green, an email arrives, the telephone rings, or a text message buzzes. The
sex of a baby remains unknown until birth (or an ultrasound). An athlete
runs a race, but the exact finishing time is unknown beforehand. Millions of

3
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people play lotteries and other games of chance, often wagering large amounts
of money. Throughout this book, we study probability using examples that will
be familiar to the reader.

Definition 1.1. When something happens at random there are several po-
tential outcomes. Exactly one of these outcomes occurs. An event is defined
to be a collection of some outcomes.

Two extreme events have names: The empty set ∅ consists of no outcomesEven though the
empty set never
happens, we will
need it to
understand disjoint
events, i.e., events
that have no
outcome in common.

(so the empty set never happens). The sample space S consists of all outcomes
(so the sample space always happens).

Example 1.2. You roll a 6-sided die.

The sample space is S = {1, 2, 3, 4, 5, 6}. Only one of these six outcomes ac-
tually occurs; for instance, 2 is a possible outcome, or 5 is a possible outcome,
etc. We cannot “solve” for which outcome occurs because, as we know from
practical experience, we do not know (in advance) which outcome will occur.
The outcome is random.

One event is {1, 3, 5}, i.e., the event that the outcome is odd. The event(Q: How many
events are there
altogether? Hint:
It’s a power of 2.)

that the roll is 2 or higher is {2, 3, 4, 5, 6}. The event that 4 does not appear is
{1, 2, 3, 5, 6}. The event {3} consists of only one outcome. Event {1, 6} has the
smallest and largest possible outcomes.

One event is a subset of another if every outcome from the first event is
contained in the second event too. Subsets are denoted with the “⊂” symbol.
For instance, an event with one outcome (such as 5) is a subset of a larger event
(such as {1, 2, 5}), which is a subset of the sample space:

{5} ⊂ {1, 2, 5} ⊂ {1, 2, 3, 4, 5, 6}.

Definition 1.3. Event A is a subset of event B, written A ⊂ B, if every
outcome in A is also an outcome in B.

B
A

Example 1.4. A student buys a book and opens it to a random page. He notes
the number of typographical errors on the page.
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The sample space is S = Z≥0, i.e., the set of nonnegative integers.

The event that the page contains at most 2 errors is {0, 1, 2}.

Example 1.5. A new mother delivers one baby.

The sample space is S = {boy, girl}. Although there is just one baby, we can
describe four events:

∅, {boy}, {girl}, {boy, girl} = S.

Example 1.6. A new mother delivers at least one baby.

One possible outcome is that the the mother has triplets, which are all girls;
we denote this outcome as (g, g, g). If she delivers a boy and then a girl, the
outcome is (b, g). So the sample space is

S = {(b), (g),

(b, b), (b, g), (g, b), (g, g),

(b, b, b), (b, b, g), (b, g, b), (b, g, g), (g, b, b), (g, b, g), (g, g, b), (g, g, g), . . .}.

Note: A new mother may have a single baby, twins, triplets, octuplets or A set of octuplets (8
babies) was born in
1998 and also in
2009 in the United
States.

any other (relatively small) number of babies at one time. We only listed the
possibilities up to triplets explicitly, but the other possibilities are included in
S too; hence, the “. . .” at the end of S.

Let A be the event that the mother has at least one boy and at least one
girl. So A does not contain the outcomes (b) or (b, b) or (b, b, b) etc., and does
not contain the outcomes (g) or (g, g) or (g, g, g) etc. Thus

A = {(b, g), (g, b), (b, b, g), (b, g, b), (b, g, g), (g, b, b), (g, b, g), (g, g, b), . . .}.

Example 1.7. You wait at a red traffic light and record the time (in seconds)
until the light turns green.

The sample space is the set of all positive real numbers, R>0. One event is
[5, 10], the event consisting of all outcomes between 5 and 10 seconds (inclusive).
Another event is (12.7,∞), i.e., the waiting time is strictly more than 12.7
seconds. Another event is {32.7} seconds, the event consisting of only the
outcome 32.7 seconds. Events can be built using unions and intersections, e.g.,
(0, 60)∪(120, 180) is the event consisting of all outcomes less than 1 minute and
also consisting of all outcomes of 2 to 3 minutes.
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Example 1.8. You notice the color of the next car to pass on the street.

The sample space is the set of all possible colors in the scheme used to classify
this car’s color, for instance, perhaps it is classified according to the sample
space

S = {red, yellow, green, blue, orange, silver, brown, black,white, other}.

As we see in the examples with the baby’s sex or car’s color, outcomes do not
have to be numbers.

At the most fundamental level, it is essential to consider how we classify the
outcomes. There are often several valid viewpoints. As an example:

Example 1.9. We hit or miss the bullseye with a dart (two possible outcomes).

bullseye
6
13
4

18120512
9

14
11
8
16

7 19 3 17 2
15
10

miss

(x, y)
x

y

r

Figure 1.1: Different sample spaces for a dart throw. Left: Two outcomes in
the sample space. Middle: Twenty-one outcomes in the sample space (the 21st
outcome denotes missing the board altogether). Right: Sample space consists
of the outcomes, according to location, given as coordinates.

The sample space is S = {hit,miss}. This is depicted on the left side of Fig-
ure 1.1. There are four events:

∅, {hit}, {miss}, {hit,miss} = S.

(The empty set never happens because it has no outcomes. Sometimes event
{hit} happens; sometimes event {miss} happens. Event {hit,miss} = S always
happens.)
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Example 1.9 (continued) When throwing a dart, we hit one of twenty re-
gions, or we miss the entire board (twenty-one possible outcomes). Notice: this
classification of the outcomes is very different than the “hit” or “miss” setup.

The sample space is S = {miss, 1, 2, 3, . . . , 20}, consisting of the twenty-one
possible outcomes: either we “miss” the board altogether or we hit one of the
20 specified regions. This is depicted in the middle of Figure 1.1. (The board
has metal ridges between the regions, so that a dart cannot land exactly on the
boundary of two regions.)

Example 1.9 (continued) When throwing a dart, we note the exact location
where the dart lands.

The sample space is

S = {(x, y) | x, y ∈ R},

consisting of the outcome listed according to the x (horizontal) and y (vertical)
locations where it landed (using the origin at the center of the dartboard as a
reference point). This is depicted on the right side of Figure 1.1.

The set notation we used for S is nice, because we are unable to list all of the
possible points, in this last version of Example 1.9; in fact, there are infinitely
many points in the sample space S = {(x, y) | x, y ∈ R}. Set notation is also
nice because we can add other conditions to the allowable points. For instance,
if we want to consider only the situation in which the dart hits the dartboard,
then the sample space could be narrowed to

{(x, y) | x2 + y2 ≤ r2},

where r is the radius of the dartboard. (In this case, we have not handled darts
that miss the board entirely.) For instance, if r = 9 inches, then the sample
space includes outcomes such as (x, y) = (3.6,−1.35), etc.

Set notation is a way to describe a collection of things, sometimes using an
annotation about conditions on these things (maybe it should be called “set
annotation”). The things that are inside the set are written on the left, and any
conditions about these things go on the right.

Notation 1.10. The notation for a set uses braces, with the contents of the
set, often followed by a line and then any conditions on the contents of the
set. {

things
in the set

∣∣∣∣ conditions onthese things

}

The dartboard example should illustrate that it is really important to un-
derstand what outcomes are possible when something random happens. This
takes some practice at the outset. Sometimes it is helpful to write a list—even
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an incomplete list—of the different outcomes that are possible from a random
phenomenon. (As a rule of thumb, we often encourage students to write five
different possible outcomes, if the problem is complicated, just to develop some
intuition.) With the darts in Example 1.9, we can certainly write down both
outcomes in the first scenario, i.e., “bullseye” or “not bullseye.” In the second
scenario, the list of all possible outcomes would be “miss,” 1, 2, 3, . . . , 20. In
the third scenario, as soon as we begin to try to write down all of the possible
locations on the board by their (x, y) coordinates, we quickly realize that this
is a hopeless task. It will not be possible for us to write down every potential
outcome, so the concise set notation is crucial to use.

Definition 1.11. We use the union notation “∪” when a new set is formed
that contains each outcome found in any of the component events. E.g., A∪B
contains each outcome that is found in A, or in B, or in both.

Definition 1.12. We use the intersection notation “∩” to construct a new
event that contains only the outcomes found in all of the components. E.g.,
A ∩B contains each outcome that is found in both A and B; it is insufficient
to be in just one of these sets.

Example 1.13. A student shuffles a deck of cards thoroughly (one time) and
then selects cards from the deck without replacement until the ace of spades
appears.

“Without replacement” means that the cards are not put back into the deck
after they are drawn. So on the first draw there are 52 cards available, but on
the second draw there are only 51 cards available, and 50 cards available on
the third draw, etc. So the ace of spades is certain to appear sometime during
the 52 draws. Also, because they are selected without replacement, the chosen
cards will be distinct.

The event that exactly three draws are needed to see the ace of spades is

{(x1, x2, x3) | x3 = A♠, and the xj ’s are distinct}.

The sample space S consists of all possible draws of distinct cards that end with
the ace of spades:

S = {(A♠)} ∪ {(x1, x2) | x2 = A♠, and the xj ’s are distinct}
∪ {(x1, x2, x3) | x3 = A♠, and the xj ’s are distinct}
∪ {(x1, x2, x3, x4) | x4 = A♠, and the xj ’s are distinct}
...
∪ {(x1, x2, . . . , x52) | x52 = A♠, and the xj ’s are distinct} .

Equivalently, if Bk = {(x1, x2, . . . , xk) | xk = A♠, for distinct xj ’s}, then the
sample space is S =

⋃52
k=1Bk.
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Example 1.14. A student draws cards from a standard deck of playing cards
until the ace of spades appears. After every unsuccessful draw, the student
replaces the card and shuffles the deck thoroughly before selecting a new card.

The set of outcomes in which the ace of spades first appears on the kth draw is

Bk = {(x1, . . . , xk) | only xk is A♠}

Notice that we dropped the condition about the cards being distinct.

The set of all possibilities in which the student actually finds the ace of Since the cards are
replaced after each
draw, this scenario
is quite different
from Example 1.13.

spades is
⋃∞
j=1Bk. The astute reader will notice that we did not yet mention

the possibility that the aces of spades never appears. We write this event as

C = {(x1, x2, x3, . . .) | none of the xk’s is A♠}.

So the entire sample space is

S =
( ⋃
k≥1

Bk

)
∪ C.

Example 1.15. A traffic engineer records times (in seconds) between the next
six cars that pass.

For example, consider when the next six cars arrive:

x
0.62 1.31 0.58 1.77 1.97 1.10

car 1 car 2 car 3 car 4 car 5 car 6

0 0.62 1.93 2.51 4.28 6.25 7.35

The sample space is

S = {(x1, . . . , x6) | xj ∈ R>0 for each j}.

The engineer uses x1 for the time until the first car passes, and x2 is the time
between the first and second cars, and in general, xj is the time between (j−1)st
and jth cars.

The event where there are at least 3 seconds between all pairs of consecutive
cars is

{(x1, . . . , x6) | xj ≥ 3 for each j}.
The event in which the cars have consecutively longer and longer inter-arrival
times (i.e., the distance between cars 1 and 2 is shorter than the distance be-
tween cars 2 and 3, which is shorter than the distance between cars 3 and 4,
etc.), is

{(x1, . . . , x6) | xj < xj+1 for each j}.
Many other possible events can be written. The possibilities are endless.




